Excellent electromagnetic interference shielding characteristics of a unidirectionally oriented thin multiwalled carbon nanotube/polyethylene film
نویسندگان
چکیده
منابع مشابه
Composite Materials for Electromagnetic Interference Shielding
This paper demonstrates that the addition of chemical agents and carbon fibers to cement can greatly enhance the shielding effectiveness of the concrete. In addition to improving the shielding effectiveness, carbon fibers and chemical agents enhance the tensile and flexural strengths significant ly. As both carbon fibers and steel fibers are electrically conductive, both can be added to cement ...
متن کاملThin-film Interference
Although much thinner than conventional optical interference coatings, nanometer-thick films made of optically absorbing materials can display strong interference effects. This new class of coatings shows promise for coloring and labeling, optical filters, tunable absorbers and emitters, and energy harvesting.
متن کاملElectromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic
In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performe...
متن کاملHigh field breakdown characteristics of carbon nanotube thin film transistors.
The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L(C) and width W(C)) and network morphology (average CNT length L(t) and alignment angle distribution θ) affect he...
متن کاملConductivity enhancement of multiwalled carbon nanotube thin film via thermal compression method
For the first time, the thermal compression method is applied to effectively enhance the electrical conductivity of carbon nanotube thin films (CNTFs). With the assistance of heat and pressure on the CNTFs, the neighbor multiwalled carbon nanotubes (CNTs) start to link with each other, and then these separated CNTs are twined into a continuous film while the compression force, duration, and tem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials & Design
سال: 2020
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2020.108918